Produkte zum Begriff Smart Data Analytics:
-
Data Just Right: Introduction to Large-Scale Data & Analytics
Making Big Data Work: Real-World Use Cases and Examples, Practical Code, Detailed Solutions Large-scale data analysis is now vitally important to virtually every business. Mobile and social technologies are generating massive datasets; distributed cloud computing offers the resources to store and analyze them; and professionals have radically new technologies at their command, including NoSQL databases. Until now, however, most books on “Big Data” have been little more than business polemics or product catalogs. Data Just Right is different: It’s a completely practical and indispensable guide for every Big Data decision-maker, implementer, and strategist. Michael Manoochehri, a former Google engineer and data hacker, writes for professionals who need practical solutions that can be implemented with limited resources and time. Drawing on his extensive experience, he helps you focus on building applications, rather than infrastructure, because that’s where you can derive the most value. Manoochehri shows how to address each of today’s key Big Data use cases in a cost-effective way by combining technologies in hybrid solutions. You’ll find expert approaches to managing massive datasets, visualizing data, building data pipelines and dashboards, choosing tools for statistical analysis, and more. Throughout, the author demonstrates techniques using many of today’s leading data analysis tools, including Hadoop, Hive, Shark, R, Apache Pig, Mahout, and Google BigQuery. Coverage includes Mastering the four guiding principles of Big Data success—and avoiding common pitfalls Emphasizing collaboration and avoiding problems with siloed data Hosting and sharing multi-terabyte datasets efficiently and economically “Building for infinity” to support rapid growth Developing a NoSQL Web app with Redis to collect crowd-sourced data Running distributed queries over massive datasets with Hadoop, Hive, and Shark Building a data dashboard with Google BigQuery Exploring large datasets with advanced visualization Implementing efficient pipelines for transforming immense amounts of data Automating complex processing with Apache Pig and the Cascading Java library Applying machine learning to classify, recommend, and predict incoming information Using R to perform statistical analysis on massive datasets Building highly efficient analytics workflows with Python and Pandas Establishing sensible purchasing strategies: when to build, buy, or outsource Previewing emerging trends and convergences in scalable data technologies and the evolving role of the Data Scientist
Preis: 24.6 € | Versand*: 0 € -
Data Just Right: Introduction to Large-Scale Data & Analytics
Making Big Data Work: Real-World Use Cases and Examples, Practical Code, Detailed Solutions Large-scale data analysis is now vitally important to virtually every business. Mobile and social technologies are generating massive datasets; distributed cloud computing offers the resources to store and analyze them; and professionals have radically new technologies at their command, including NoSQL databases. Until now, however, most books on “Big Data” have been little more than business polemics or product catalogs. Data Just Right is different: It’s a completely practical and indispensable guide for every Big Data decision-maker, implementer, and strategist. Michael Manoochehri, a former Google engineer and data hacker, writes for professionals who need practical solutions that can be implemented with limited resources and time. Drawing on his extensive experience, he helps you focus on building applications, rather than infrastructure, because that’s where you can derive the most value. Manoochehri shows how to address each of today’s key Big Data use cases in a cost-effective way by combining technologies in hybrid solutions. You’ll find expert approaches to managing massive datasets, visualizing data, building data pipelines and dashboards, choosing tools for statistical analysis, and more. Throughout, the author demonstrates techniques using many of today’s leading data analysis tools, including Hadoop, Hive, Shark, R, Apache Pig, Mahout, and Google BigQuery. Coverage includes Mastering the four guiding principles of Big Data success—and avoiding common pitfalls Emphasizing collaboration and avoiding problems with siloed data Hosting and sharing multi-terabyte datasets efficiently and economically “Building for infinity” to support rapid growth Developing a NoSQL Web app with Redis to collect crowd-sourced data Running distributed queries over massive datasets with Hadoop, Hive, and Shark Building a data dashboard with Google BigQuery Exploring large datasets with advanced visualization Implementing efficient pipelines for transforming immense amounts of data Automating complex processing with Apache Pig and the Cascading Java library Applying machine learning to classify, recommend, and predict incoming information Using R to perform statistical analysis on massive datasets Building highly efficient analytics workflows with Python and Pandas Establishing sensible purchasing strategies: when to build, buy, or outsource Previewing emerging trends and convergences in scalable data technologies and the evolving role of the Data Scientist
Preis: 18.18 € | Versand*: 0 € -
Data Analytics with Spark Using Python
Solve Data Analytics Problems with Spark, PySpark, and Related Open Source ToolsSpark is at the heart of today’s Big Data revolution, helping data professionals supercharge efficiency and performance in a wide range of data processing and analytics tasks. In this guide, Big Data expert Jeffrey Aven covers all you need to know to leverage Spark, together with its extensions, subprojects, and wider ecosystem.Aven combines a language-agnostic introduction to foundational Spark concepts with extensive programming examples utilizing the popular and intuitive PySpark development environment. This guide’s focus on Python makes it widely accessible to large audiences of data professionals, analysts, and developers—even those with little Hadoop or Spark experience.Aven’s broad coverage ranges from basic to advanced Spark programming, and Spark SQL to machine learning. You’ll learn how to efficiently manage all forms of data with Spark: streaming, structured, semi-structured, and unstructured. Throughout, concise topic overviews quickly get you up to speed, and extensive hands-on exercises prepare you to solve real problems.Coverage includes:• Understand Spark’s evolving role in the Big Data and Hadoop ecosystems• Create Spark clusters using various deployment modes• Control and optimize the operation of Spark clusters and applications• Master Spark Core RDD API programming techniques• Extend, accelerate, and optimize Spark routines with advanced API platform constructs, including shared variables, RDD storage, and partitioning• Efficiently integrate Spark with both SQL and nonrelational data stores• Perform stream processing and messaging with Spark Streaming and Apache Kafka• Implement predictive modeling with SparkR and Spark MLlib
Preis: 35.3 € | Versand*: 0 € -
Data Analytics with Spark Using Python
Solve Data Analytics Problems with Spark, PySpark, and Related Open Source ToolsSpark is at the heart of today’s Big Data revolution, helping data professionals supercharge efficiency and performance in a wide range of data processing and analytics tasks. In this guide, Big Data expert Jeffrey Aven covers all you need to know to leverage Spark, together with its extensions, subprojects, and wider ecosystem.Aven combines a language-agnostic introduction to foundational Spark concepts with extensive programming examples utilizing the popular and intuitive PySpark development environment. This guide’s focus on Python makes it widely accessible to large audiences of data professionals, analysts, and developers—even those with little Hadoop or Spark experience.Aven’s broad coverage ranges from basic to advanced Spark programming, and Spark SQL to machine learning. You’ll learn how to efficiently manage all forms of data with Spark: streaming, structured, semi-structured, and unstructured. Throughout, concise topic overviews quickly get you up to speed, and extensive hands-on exercises prepare you to solve real problems.Coverage includes:• Understand Spark’s evolving role in the Big Data and Hadoop ecosystems• Create Spark clusters using various deployment modes• Control and optimize the operation of Spark clusters and applications• Master Spark Core RDD API programming techniques• Extend, accelerate, and optimize Spark routines with advanced API platform constructs, including shared variables, RDD storage, and partitioning• Efficiently integrate Spark with both SQL and nonrelational data stores• Perform stream processing and messaging with Spark Streaming and Apache Kafka• Implement predictive modeling with SparkR and Spark MLlib
Preis: 35.3 € | Versand*: 0 €
-
Wie funktioniert Big Data Analytics?
Wie funktioniert Big Data Analytics? Big Data Analytics beinhaltet die Verarbeitung und Analyse großer Mengen von Daten, um Muster, Trends und Erkenntnisse zu identifizieren. Zunächst werden die Daten gesammelt und gespeichert, dann werden sie mithilfe von speziellen Tools und Algorithmen analysiert. Durch den Einsatz von Data Mining, maschinellem Lernen und künstlicher Intelligenz können Unternehmen wertvolle Einblicke gewinnen und fundierte Entscheidungen treffen. Die Ergebnisse der Analyse können für verschiedene Anwendungen genutzt werden, wie z.B. zur Verbesserung von Produkten und Dienstleistungen, zur Optimierung von Geschäftsprozessen oder zur Vorhersage von zukünftigen Entwicklungen.
-
Was ist der Unterschied zwischen Big Data und Smart Data?
Big Data bezieht sich auf große Mengen von Daten, die aus verschiedenen Quellen stammen und oft unstrukturiert sind. Smart Data hingegen bezieht sich auf die Analyse und Nutzung dieser Daten, um wertvolle Erkenntnisse und Handlungsempfehlungen zu generieren. Smart Data konzentriert sich auf die Auswahl und Verarbeitung relevanter Daten, um konkrete Probleme zu lösen oder Entscheidungen zu unterstützen.
-
Wie können Big Data Analytics-Technologien im Projektmanagement eingesetzt werden?
Big Data Analytics-Technologien können im Projektmanagement eingesetzt werden, um große Mengen an Daten aus verschiedenen Quellen zu sammeln und zu analysieren. Dies ermöglicht es Projektmanagern, Trends und Muster zu erkennen, Risiken frühzeitig zu identifizieren und fundierte Entscheidungen zu treffen. Darüber hinaus können Big Data Analytics-Technologien auch zur Vorhersage von Projektverzögerungen oder zur Optimierung von Ressourcen eingesetzt werden.
-
Was bietet bessere Chancen auf dem Arbeitsmarkt: die Entwicklung einer Data Analytics App oder Web Development?
Es ist schwierig, eine eindeutige Antwort zu geben, da dies von verschiedenen Faktoren abhängt, wie zum Beispiel dem aktuellen Bedarf auf dem Arbeitsmarkt, den individuellen Fähigkeiten und Erfahrungen des Einzelnen sowie den spezifischen Anforderungen der jeweiligen Branche. Data Analytics ist ein wachsender Bereich, da Unternehmen verstärkt datengetriebene Entscheidungen treffen möchten. Auf der anderen Seite ist Webentwicklung nach wie vor sehr gefragt, da Unternehmen eine starke Online-Präsenz benötigen. Es kann daher sinnvoll sein, die Nachfrage in Ihrer Region und Ihre persönlichen Interessen und Fähigkeiten zu berücksichtigen, um die besten Chancen auf dem Arbeitsmarkt zu ermitteln.
Ähnliche Suchbegriffe für Smart Data Analytics:
-
Applied Business Analytics: Integrating Business Process, Big Data, and Advanced Analytics
Bridge the gap between analytics and execution, and actually translate analytics into better business decision-making! Now that you've collected data and crunched numbers, Applied Business Analytics reveals how to fully apply the information and knowledge you've gleaned from quants and tech teams. Nathaniel Lin explains why "analytics value chains" often break due to organizational and cultural issues, and offers "in the trenches" guidance for overcoming these obstacles. You'll discover why a special breed of "analytics deciders" is indispensable for any organization that seeks to compete on analytics… how to become one of those deciders… and how to identify, foster, support, empower, and reward others to join you. Lin draws on actual cases and examples from his own experience, augmenting them with hands-on examples and exercises to integrate analytics at all levels: from top-level business questions to low-level technical details. Along the way, you'll learn how to bring together analytics team members with widely diverse goals, knowledge, and backgrounds. Coverage includes: How analytical and conventional decision making differ — and the challenging implications How to determine who your analytics deciders are, and ought to be Proven best practices for actually applying analytics to decision-making How to optimize your use of analytics as an analyst, manager, executive, or C-level officer Applied Business Analytics will be invaluable to wide audiences of professionals, decision-makers, and consultants involved in analytics, including Chief Analytics Officers, Chief Data Officers, Chief Scientists, Chief Marketing Officers, Chief Risk Officers, Chief Strategy Officers, VPs of Analytics and/or Big Data, data scientists, business strategists, and line of business executives. It will also be exceptionally useful to students of analytics in any graduate, undergraduate, or certificate program, including candidates for INFORMS certification.
Preis: 29.95 € | Versand*: 0 € -
Applied Business Analytics: Integrating Business Process, Big Data, and Advanced Analytics
Bridge the gap between analytics and execution, and actually translate analytics into better business decision-making! Now that you've collected data and crunched numbers, Applied Business Analytics reveals how to fully apply the information and knowledge you've gleaned from quants and tech teams. Nathaniel Lin explains why "analytics value chains" often break due to organizational and cultural issues, and offers "in the trenches" guidance for overcoming these obstacles. You'll discover why a special breed of "analytics deciders" is indispensable for any organization that seeks to compete on analytics… how to become one of those deciders… and how to identify, foster, support, empower, and reward others to join you. Lin draws on actual cases and examples from his own experience, augmenting them with hands-on examples and exercises to integrate analytics at all levels: from top-level business questions to low-level technical details. Along the way, you'll learn how to bring together analytics team members with widely diverse goals, knowledge, and backgrounds. Coverage includes: How analytical and conventional decision making differ — and the challenging implications How to determine who your analytics deciders are, and ought to be Proven best practices for actually applying analytics to decision-making How to optimize your use of analytics as an analyst, manager, executive, or C-level officer Applied Business Analytics will be invaluable to wide audiences of professionals, decision-makers, and consultants involved in analytics, including Chief Analytics Officers, Chief Data Officers, Chief Scientists, Chief Marketing Officers, Chief Risk Officers, Chief Strategy Officers, VPs of Analytics and/or Big Data, data scientists, business strategists, and line of business executives. It will also be exceptionally useful to students of analytics in any graduate, undergraduate, or certificate program, including candidates for INFORMS certification.
Preis: 39.58 € | Versand*: 0 € -
Predictive Analytics: Data Mining, Machine Learning and Data Science for Practitioners
Use Predictive Analytics to Uncover Hidden Patterns and Correlations and Improve Decision-MakingUsing predictive analytics techniques, decision-makers can uncover hidden patterns and correlations in their data and leverage these insights to improve many key business decisions. In this thoroughly updated guide, Dr. Dursun Delen illuminates state-of-the-art best practices for predictive analytics for both business professionals and students. Delen's holistic approach covers key data mining processes and methods, relevant data management techniques, tools and metrics, advanced text and web mining, big data integration, and much more. Balancing theory and practice, Delen presents intuitive conceptual illustrations, realistic example problems, and real-world case studiesincluding lessons from failed projects. It's all designed to help you gain a practical understanding you can apply for profit.* Leverage knowledge extracted via data mining to make smarter decisions* Use standardized processes and workflows to make more trustworthy predictions* Predict discrete outcomes (via classification), numeric values (via regression), and changes over time (via time-series forecasting)* Understand predictive algorithms drawn from traditional statistics and advanced machine learning* Discover cutting-edge techniques, and explore advanced applications ranging from sentiment analysis to fraud detection
Preis: 37.44 € | Versand*: 0 € -
Getting Started with Data Science: Making Sense of Data with Analytics
Harvard Business Review recently called data science "The Sexiest Job of the 21st Century." It's not just sexy: for millions of managers and students who need to solve business problems with big data, it's indispensable. Unfortunately, there's been nothing sexy about learning data science -- until now. Getting Started with Data Science takes its approach from worldwide best-sellers like Freakonomics and the books of Malcolm Gladwell: it teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers careful, jargon-free coverage of basic theory and technique, backed with plenty of clear examples and practice opportunities. Everything's software and platform independent, so you can learn what you need whether you work with R, Stata, SPSS, SAS, or another toolset. Best of all, Haider teaches a crucial skillset most academic data science books ignore: how to transform data into narratives, graphics, and tables that make it vivid and actionable. For each problem, you'll walk through identifying the right data and methods, creating summary statistics, describing and visualizing findings, and seeing how others have handled the challenge. In advanced chapters, you'll also learn sophisticated statistical modeling techniques. Throughout, the focus is on data: finding it, using it, and powerfully communicating its meaning.
Preis: 24.6 € | Versand*: 0 €
-
Wie wechsle ich von Xtra Triple zu MagentaMobil Start mit Data Smart M?
Um von Xtra Triple zu MagentaMobil Start mit Data Smart M zu wechseln, musst du dich an deinen Mobilfunkanbieter, also die Telekom, wenden. Dort kannst du nachfragen, ob ein Tarifwechsel möglich ist und welche Schritte du dafür unternehmen musst. Es kann sein, dass du einen neuen Vertrag abschließen musst oder dass der Wechsel innerhalb deines bestehenden Vertrags möglich ist.
-
Welcher Motor Smart 451?
Welcher Motor Smart 451? Der Smart 451 ist mit verschiedenen Motoren erhältlich, darunter Benzin- und Dieselmotoren. Zu den Benzinmotoren gehören der 1.0-Liter-Dreizylinder und der 1.0-Liter-Turbomotor. Die Dieselmotoren umfassen den 0.8-Liter- und den 1.5-Liter-Vierzylinder. Jeder Motor bietet unterschiedliche Leistungs- und Effizienzwerte, sodass die Auswahl des richtigen Motors von den individuellen Anforderungen und Vorlieben des Fahrers abhängt. Welcher Motor letztendlich für den Smart 451 gewählt wird, hängt also von Faktoren wie Leistung, Kraftstoffverbrauch und persönlichen Präferenzen ab.
-
Was bedeuten Data Science und Data Engineering?
Data Science bezieht sich auf die Analyse und Interpretation von Daten, um Erkenntnisse und Muster zu gewinnen, die bei der Lösung von Problemen und der Unterstützung von Entscheidungsprozessen helfen. Data Engineering hingegen bezieht sich auf die Entwicklung und Verwaltung von Dateninfrastrukturen, um sicherzustellen, dass Daten effizient erfasst, gespeichert, verarbeitet und analysiert werden können. Data Engineering legt den Fokus auf die technische Seite der Datenverarbeitung, während Data Science sich auf die Analyse und Interpretation der Daten konzentriert.
-
Wer baut den Smart Motor?
Wer baut den Smart Motor? Der Smart Motor wird von verschiedenen Herstellern produziert, je nachdem für welches Fahrzeugmodell er bestimmt ist. Einige bekannte Hersteller von Elektromotoren sind beispielsweise Bosch, Siemens oder Continental. Diese Unternehmen haben langjährige Erfahrung in der Entwicklung und Produktion von Motoren für Elektrofahrzeuge. Durch ihre Expertise und technologische Innovationen können sie leistungsstarke und effiziente Motoren für Smart Cars herstellen. Letztendlich ist es also eine Kombination aus verschiedenen Unternehmen, die den Smart Motor bauen.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.